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SUMMARY 

Semidirect solution techniques can be an effective alternative to the more conventional iterative approaches 
used in many finite difference methods. This paper summarizes several semidirect techniques which generally 
have not been applied to the Navier-Stokes and energy equations in finite difference form. The methods 
presented use both successive substitution and Jacobian-based updates as well as  two variations of Broyden's 
full matrix update. A hybrid method is also presented, as is a norm-reducing search technique that can be 
used to enhance the convergence characteristics of Any semidirect approach. These methods have been 
compared with the well known iterative methods SIMPLE and SIMPLER. The comparison was performed 
on the natural convection and driven cavity problems. The semidirect methods proved to be reliably 
convergent without the need for a priori specification of variable under-relaxation factors, which was 
necessary with the iterative methods. Natural convection and driven cavity solutions have been readily 
obtained with the proposed methods for Rayleigh and Reynolds numbers up to 10" and 10' respectively. Of 
the semidirect techniques, the hybrid approach was the most robust. From an arbitrary zero initial guess this 
method was able to  obtain a solution to the natural convection problem for Rayleigh numbers three orders of 
magnitude larger than was possible with the Newton--Raphson update. The computational effort required by 
the semidirect methods is comparable to that required by the iterative methods; however, the memory 
requirements can be significantly greater. 

K E Y  WORDS Semidirect methods Finite difference formula~ion Robust solutions Navier-Stokes and energy 
equations 

INTRODUCTION 

The intent of this report is to show how certain semidirect and iterative methods compare when 
applied to the fluid dynamics equations in finite difference form. The performance of each method 
depends not only on the solution strategy but also on the discretization practice selected. A 
detailed description and analysis of several current discretization practices is given by Nieckele.' 
The power law scheme as described by Patankar2 was used in all of the methods presented in this 
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paper. Although selection of the particular discretization practice is important, attention here is 
focused primarily on the solution method. It is important to note, however, that since the 
performance of a method does depend on the particular discretization strategy, a direct 
comparison between the solution techniques presented here and those published elsewhere would 
require similar discretization practices. 

The fundamental difference between iterative and semidirect methods is that with the latter the 
residual or error is exactly equal (except for round-off errors) to zero for the entire calculation 
domain at the end of an iteration, whereas in the former the residual is only locally reduced at each 
iteration. Therefore the iterations required for convergence with semidirect methods are fairly 
insensitive to the number of unknowns or grid mesh, and for linear problems no iterations are 
required. The computational effort, however, does increase dramatically as the number of 
unknowns is increased, owing to the fact that all unknowns are solved for simultaneously. With 
many iterative approaches, including both SIMPLE and SIMPLER, the iterations required for 
convergence are strongly dependent on the number of unknowns, and hence the computational 
effort also increases dramatically as the grids are refined. There are, however, some iterative 
methods that do not exhibit this strong iteration dependence on grid refinement. One such method 
is the multigrid strategy first put forth by Brandt.3 In this approach a series of grids is used to 
enhance residual reduction. Thus the multigrid strategy attempts a more global residual reduction 
than is typical with many iterative methods. 

An important difference between the iterative and semidirect methods is the role the initial guess 
plays in the solution process. Semidirect methods tend to be more sensitive to the choice of the 
initial guess than the iterative methods. Since iterative methods are relatively insensitive to the 
initial guess, solutions can be obtained quite systematically for various degrees of non-linearities 
for the same initial guess. Unfortunately, as the non-linearity becomes large, use of a previous 
solution at a milder non-linearity as an initial guess usually does not help the solution process 
significantly. With the semidirect methods, almost the opposite is, true. Use of a previous solution 
as an initial guess will greatly facilitate the solution process for strongly non-linear problems. 

From the authors’ perspective, the most desirable feature of the semidirect approach is the 
elimination of the need to prescribe under-relaxation factors and hence the potential t o  obtain a 
solution in a more systematic fashion than is typical with many iterative methods. Another 
desirable feature of the semidirect approach is the ability to eliminate residuals completely from 
the entire calculation domain. Thus, if a discrete solution can be obtained, machine precision 
accuracy for each field variable is possible. The most serious limitations of the semidirect methods 
are the memory requirements and the computational effort required as the number of unknowns 
becomes large. 

Before presenting results of the comparison, a brief discussion of the various methods used will 
be given. Since the iterative methods SIMPLE and SIMPLER are well known and described in 
detail in Reference 2, only the semidirect methods will be presented. These methods have been 
constructed by combining desirable features of several techniques from various applications 
reported in the literature. A few of the more pertinent articles relating to semidirect solution 
techniques as applied here are given below, followed by a section summarizing the implementation 
of the semidirect methods constructed for use in the comparison. 

EXISTING SOLUTION TECHNIQUES 

Two of the most pertinent semidirect finite difference methods investigated were those due to 
Vanka and Leaf4 and Braaten.’ In each of these studies the methods were tested on a driven cavity 
and sudden expansion problem. In the first semidirect method of Vanka and Leaf the finite 
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difference primitive variable formulation was solved in a fully coupled manner by sparse matrix 
techniques. The discrete continuity and momentum equations were solved in their original form 
using a Newton-Raphson linearization technique. 

In a later paper Vanka6 tried to extend the approach to turbulent flows. The fully coupled 
solution of the momentum equations was followed by the fully coupled solution of the turbulence 
equations arising from the K-E model. Because of the source terms in the k-& model, the 
Newton-Raphson technique was unable to yield a semidirect solution to the turbulence equations 
for the generation and dissipation rates encountered. 

In the work of Braaten5 three semidirect methods were developed. The first was a primitive 
variable formulation very similar to that of Vanka and Leaf. The only differences were that in 
Braaten’s formulation no Newton-Raphson linearization was employed and small non-zero 
elements were placed on the diagonal of the coefficient matrix to eliminate the need for reordering 
the momentum and continuity equations. In Braaten’s second and third methods pressure was 
eliminated from the calculation by a penalty function formulation. The penalty function approach 
is common in finite element methods and is described by Thoma~set .~ Direct solutions of the 
resulting set of equations were implemented by using a successive substitution scheme in one 
instance and a Newton-Raphson scheme similar to Vanka’s in another. All methods were 
implemented using sparse matrix techniques. 

Unlike finite difference formulations, applications of semidirect methods to finite element 
formulations are extremely common because these formulations result in a set of algebraic 
equations that are not diagonally dominant. General approaches are given by Bergan et aL8 and 
Matthies and Strang,’ and a review of some promising methods is given by Sticklin et aLiO and 
Bathe.” A particularly interesting paper by Bathe and Cimento” describes a procedure for 
enhancing the convergence characteristic of their semidirect approach. In fact, the ideas put forth 
by Bathe and CimentoI2 have been applied by Engleman et a l l 3  to solve the driven cavity 
recirculation problem. Although it was obvious that his discretizatios were not tailored for fluid 
mechanics (convergence problems were encountered for Reynolds numbers greater than 500), the 
applicability of this method for non-symmetric sparse matrices was illustrated. 

In addition to the more conventional approaches used with finite difference and finite element 
formulations, alternative approaches were investigated with the hope of constructing more robust 
methods. This effort was concentrated in three areas. In the first two areas methods that extend the 
radius of convergence were investigated. These methods include hybrid methods, which incorpor- 
ate multiple linearization algorithms into the solution strategy (see Le~enberg,’~ M a r q ~ a r d t , ’ ~  
Powell16 and BlueI7), and parameter methods (see Bryson and Ho18), which seek to increase the 
radius of convergence directly by modifying the path of the solution process with a suitably chosen 
parameter. The third area dealt with the reduction of computational effort by using superlinear 
methods based on orthogonalization techniques. This approach is described by Broyden’ ’, 2o and 
Broyden et al.”. 

FORMULATION AND IMPLEMENTATION 

The next few paragraphs illustrate the approach used to formulate and implement the semidirect 
solution techniques. The formulation is accomplished by first discretizing the governing elliptic 
equations and then structuring the resulting coupled non-linear algebraic equations in a suitable 
vector representation. 

The general form of the governing equations to be discretized is given by 
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Equation (1 )  is composed of an unsteady term and a convection, diffusion and source term. The 
particular values of 4, and S are determined directly from the transport equations governing the 
problem of interest. For this study only steady state solutions are considered; therefore the first 
term in equation ( I )  is ignored. 

The discretization practice chosen here utilizes a control volume formulation and a staggered 
grid. Equation ( I )  is integrated over each of the control volumes for the continuity equation (4 = 1) 
and for each of the dependent variables to yield a set of coupled algebraic equations. 

The discretization equations can be conveniently cast into vector form by defining a suitable 
state vector. For this study the state vector is defined by 

X = ( U k r . .  . U N d ,  0 1 9 . .  . V N d ,  . . P N d ,  T I , .  . . T N d ) T ,  ( 2 )  
where N d  is the number of grid points for each dependent variable. Using the definitions given by 
equation (2), the discretization equations can be written in vector notation as 

A.x = b, ( 3 )  
where x is the N-dimensional state vector, A is the ( N  x N)-dimensional coefficient matrix and b is 
the N-dimensional source vector. The form of equation ( 3 )  and the related A-matrix is given in 
Figure 1. The elements of A-matrix are the coefficients of the discretization 2quations. These 
coefficients are a function of the local convective and diffusive fluxes and are evaluated by the 
power law scheme described by Patankar.’ 
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It is the goal of the solution process to solve for x such that the residual vector given by 

R b - AT (4) 
is identically equal to zero. 

point iterative scheme in vector form. The form of the general vector update is given by 
All of the semidirect approaches used in this paper have been implemented by using a fixed 

( 5 )  

where P is the direction vector and t is a scalar multiplier that can be set equal to one or can be 
determined by a search procedure. When a search is used, this scalar multiplier serves to select the 
appropriate length of the direction vector such that the updated state vector will minimize or 
reduce the residual relative to a full step update (i.e. t = 1). An expression for the direction vector 
that results in a zero residual vector at the end of an iterative step is given by 

Xi+ 1 = xi + tP(Xi), 

P =  H-'.R. (6) 
In  equation (6)  H is the generalized coefficient matrix, which takes on different forms depending on 
the particular solution method. 

All of the semidirect techniques described in this paper can be represented compactly in terms of 
equation (5) by a suitable choice of the direction vector and the corresponding search parameter. 
The semidirect methods, along with each associated direction vector and search parameter, are 
summarized in Table 1. The forms of the direction vector used for each of these methods are given 
in Table 11. In Table I the undetermined parameters are E, t* and 6. Selection of 6 is based on t* .  
Selection of E and t* is done by performing a search. E is generally some small value, while t* 
generally ranges between zero and two. The value o f t*  is determined by solving the following 
auxiliary minimization problem: 

aylat = 0, ( 7 )  

(8) 

where 

y z R(xi  + t Pi)-R(xi + t Pi). 

Equation (8) illustrates that y can be interpreted as the square of the Euclidean norm of the 
residual vector; therefore the solution of equation ( 7 )  for t = t *  results in a strict norm 
minimization update. It is often more effective to perform norm reduction rather than strict 
minimization. A norm reduction strategy has been used in this study by relaxing the equality 

Table I .  Summary of methods developed 

Method Direction vector Search 
parameter 

A-matrix or successive substitution (SS) 
Newton-Raphson (NR) 
Modified Broyden (MB) 
Recursive Broyden (RB) 
Steepest descent (SD) 
Search with A-matrix update (SA) 
Search with Jacobian update (SJ) 
Search with Broyden update (SB) 
Hybrid scheme (HS) 

Pi = PA 
P,==P? 
P,=PS 
P,=P,R 
pi=ps 
Pi=Pa 
Pi = P[ 
Pi=P; 

P,=6P"(1- 

t=  I 
t = I  
t=  1 
t=  1 

t= t*  
t= t*  
t=t* 

t=C: 

- 6) P; t=t* 
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Table 11. Summary of direction vectors 

Update Form of direction vector 

A-matrix PA = A- '.R 
where A is the matrix of a coefficients 

Jacobian 

Modified Broyden Pg =qi-pi(di+ri)di*qi 
where qi= - J; '*Ri 

d i=  t i -  Pg- 
r .=q.  -pB 

I I 1 - 1  
pi=  l/(di.ri) 

Recursive Broyden Pf=qi-pi (d i+ri )d i*qi  
where qj + = q - pj(dj + rj)dj-qj; j = 1, i - 1 

q1 = - J; l - ~ i  

di = t i -  Pf- 
r.=q.-PR 

I I r - 1  

pi= l/(di*ri) 

Steepest descent p f =  - R - J  

constraint given in equation (7). The strategy chosen is particuarly effective since it results in less 
computational effort than strict minimization and for all practical purposes the same t*.  It does 
not, however, require a monotonic reduction in the norm at each and every iteration since the 
search parameter results in a norm that only approximates the minimum. As illustrated in Table I, 
the search has been used with all of the basic updates summarized in Table 11. A detailed 
description of these updates as applied to the fluid dynamics equations in fiaite difference form is 
given in Reference 22. 

In each of the basic updates the discretization equations are solved simultaneously and the non- 
linearities are resolved by iteration. The A-matrix update is a successive substitution formulation 
in which the generalized coefficient matrix contains only the coefficients appearing in the original 
discretization equations. In contrast to this formulation, the Jacobian update (which when used 
without a search is the well-known Newton-Raphson method) utilizes a generalized coefficient 
matrix composed not only of the original coefficients but also of additional terms that serve to 
accelerate convergence as the solution is approached. These terms are the direct result of the 
differentiation of the residual vector with respect to the state vector and in this implementation are 
determined analytically. 

With the Broyden-based methods the fundamental idea is to reduce computational effort by 
performing approximate Jacobian updates. In Broyden's original method neither the Jacobian 
nor its inverse was required once the algorithm was started. Unfortunately the original approach 
is not directly applicable to large systems since it entails full matrix manipulations. For the 
methods used here, Broyden's original approach has been approximated by modifying his full 
matrix update. This approximation retains the essence of the original method but requires that the 
Jacobian and its factorization be evaluated at least on selected iterations. Two versions of the 
vector updates have been implemented. In the first the Jacobian and its factorization are evaluated 
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on alternate iterations. In the second a pseudo-direction vector, which is also based on a Broyden 
update, is used to better approximate the original approach. The latter update requires the user to 
specify how many steps are to be taken before the algorithm is to be restarted. Note that this is the 
only semidirect method that requires a priori parameter specification. 

With the hybrid approach the goal is to enhance robustness by using a first-order type of 
linearization when the procedure is far from the solution and then switch to a second-order 
linearization as the solution is approached. Initially this was implemented by using a combination 
of steepest descent and Jacobian updates. The steepest descent algorithm was chosen because of its 
simplicity and the fact that factorization is not required. This algorithm forces the state vector to 
move in the direction of maximum change. Unfortunately the residual vector is not guaranteed to 
be equal to zero at the end of any iteration with this update. Performance of the steepest descent 
algorithm, even with a search, was not as robust as originally desired. To improve the robustness 
of the overall hybrid method, the steepest descent algorithm was discarded and replaced with an 
A-matrix update. 

Use of any of the proposed methods requires determination of the direction vector, the general 
form of which is given by equation (6). Thus it can be seen that the direct methods require the 
evaluation of H-'-R, where His large, non-symmetric and sparse. In actual practice the coefficient 
matrix is never inverted; rather the evaluation of the direction vector is performed by using a form 
of Gaussian elimination. For this study the Yale sparse matrix package (YSMP) (Eisenstat et 
al. 23), which uses an efficient LU decomposition, was used to evaluate the direction vectors. 

The final information needed to implement the various methods is the specification of the 
boundary conditions. This information may be incorporated through the source term or by 
treating the boundary variables in the same manner as all other dependent variables. This latter 
treatment facilitates the general implementation of either prescribed or gradient-type conditions, 
the latter of which requires the calculation of the dependent variable on the boundary. 

Treatment of a prescribed value of 4, whether on the boundaries or anywhere in the calculation 
domain, is handled by initializing the appropriate state with the prescribed value of 4, setting the 
residual equal to zero, and in the corresponding row of the coefficient matrix setting the off- 
diagonal elements equal to zero and the diagonal element equal to one. 

Evaluation of the pressure field requires two special features. When the normal velocities are 
prescribed on all boundaries, the pressure must be prescribed at one point in the calculation 
domain. The value of the pressure, which is immaterial since only pressure differences appear in 
the discretized equations, is prescribed as stated above. The second feature is necessary since 
pressure does not appear explicitly in the continuity equation, hence the main diagonal of the 
coefficient matrix corresponding to pressure is zero (see Figure 1). The treatment taken here is to 
insert a small non-zero value of 10- lo  on the diagonal and require that the residual vector satisfy 
the original continuity equation. 

RESULTS 

The methods outlined in this paper have been used to solve both the natural convection and 
driven cavity problems. The square cavity problems were solved using a 30 x 30 irregularly spaced 
grid. The non-uniformity of this grid was generated in an exponential fashion with the refined 
grids along the boundaries. The accuracy of this grid mesh has been established by comparing 
results with those given by the benchmark paper of De Vahl Davis.24 In his paper a systematic 
analysis of computation errors was presented. The results generated in the work presented here are 
within 05% of the benchmark solution over the range of Rayleigh numbers given by De Vahl 
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Davis. In this work the same grid was used for all Rayleigh numbers; thus the results at the largest 
Rayleigh number would be less accurate than those at or below lo6 (the maximum value presented 
in the De Vahl Davis paper). The same grid was also used for the driven cavity problem. Results 
for the natural convection problem will be given first, followed by those of the driven cavity 
problem. 

Natural convection problem 

To solve this problem in the same form as given by others,25 the Boussinesq approximation was 
invoked. The governing equations are 

Subject to the following boundary conditions: 

o = o  x=o, o=  I ;  x= 1, 
aela Y =  0; Y=O, sola Y = 0; Y = l  

U = V=O; all boundaries. 

Results are presented in terms of the Rayleigh number, which is Ra = GrPr.  All results are given for 
Pr =0.71. Hence large Rayleigh numbers correspond to large Grashof numbers. Results for the 
various methods are summarized in Table 111. This table shows the number of iterations required 
for convergence and execution times (in seconds on the CRAY-I computer) for each of the 
methods for various Rayleigh numbers. The results were generated using a zero initial guess and 
full factorization. 

Table 111. Iterations and (time) required for the direct solution of the natural 
convection problem (initial guess x(O)=O, full factorization) 

RU = 104 105 106 1 0 7  
Method 

Hybrid (HS) 6 (26.4) 7 (28 -5 )  I 1  (42.7) 21 (70.6) 
Jacobian search (SJ) 6 (26.4) 10 (44.2) 19 (85.1) - 

Newton-Raphson (NR) 6 (25.8) 1 1  (44.9) - - 
Broyden search (SB) 8 (20.2) 1 1  (29.7) - - 

Recursive search (SR) 8 (16.6) 14 (24.2) - - 

A-matrix search (SA) 9 (21.6) 25 (62.3) __ - 

Modified Broyden (MB) 8 (18.9) ~._ 

Recursive Broyden (RB) 16 (13.3) - 

- __ 
- - 

Note: no entry implies that the method failed to converge after 30 iterations or, as in the case of 
the Newton-Raphson method, diverged. 
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It was the original intent in the construction of this table to include SIMPLE and SIMPLER. 
However, solution of the natural convection problem by the iterative methods over the range of 
Rayleigh numbers illustrated in the table proved more difficult than originally anticipated. The 
difficulty was due to the fact that the iterative methods require the selection of a set of suitable 
under-relaxation factors. Hence several runs were required for each Rayleigh number. These 
results will be presented shortly; however, first the highlights of the semidirect methods 
summarized in Table 111 will be discussed. 

Since the Newton-Raphson method is the most commonly used semidirect method, it is 
convenient to compare the other techniques to this approach. Table 111 illustrates that with the 
Newton-Raphson method solutions were obtained from a zero initial guess for RUG lo5. This 
same result has been reported by Stevens’’ and Taylor and Ijam.’6 Inspection of the table shows 
that the Newton-Raphson scheme is superior to two of the proposed strategies. It also shows that 
there are two methods that are as robust as the Newton-Raphson method and two that are 
significantly more robust. 

Use of the modified and recursive Broyden methods without a search is not advised for 
problems with substantial non-linearities. When used with a search, however, they can be as 
robust as the Newton-Raphson method yet require only half the computational effort. The search 
with the A-matrix update, although capable of obtaining a solution for the same degree of non- 
linearity as the Newton-Raphson method, requires significantly more iterations than the latter. 
The successive substitution method, which is the same as the A-matrix update without the search, 
does not appear. This method, although effective for solving the driven cavity problem, as will be 
illustrated shortly, required more than 30 iterations to obtain a solution to the natural convection 
problem, even for Ra= lo4. 

Table I11 illustrates the superiority of the hybrid scheme. The method is in fact even more robust 
than indicated here since no results have been reported for situations that require more than 30 
iterations. By removing this restriction, the hybrid method was capable of obtaining a solution 
from a zero initial guess for Ra = lo8. Figure 2 illustrates the performance of the hybrid method as 
a function of the Rayleigh number. The performance of this method represents a significant 
improvement over existing semidirect techniques. 

Hybrid Method 

x (0) =o 

t 

3 

1 o4 I o5 106 108 

Ra 

Figure 2. Performance of hybrid method as a function of the Rayleigh number 
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A comparison between the most promising semidirect methods and the well known iterative 
methods SIMPLE and SIMPLER is given in Table IV. The semidirect methods have been run 
with reduced factorization and initial guesses from previous solutions where appropriate. The 
iterative methods have been run with optimum or near-optimum under-relaxation factors. The 
under-relaxation factors were determined by trial and error, and this effort is not included in the 
table; hence the results for the iterative methods assume that the optimum under-relaxation 
factors are known a priori. The total iterations are given first, along with the number of iterations 
performed with reduced factorization for the semidirect methods. When previous solutions are 
used as an initial guess, the iterations refer to the sum of the total iterations required to obtain the 
converged solution. Time in seconds required to obtain a converged solution is shown in 
parentheses. 

With the iterative methods SIMPLE and SIMPLER solutions were obtained for Rayleigh 
numbers up to lo7. Based on results at Ra= lo', three new combinations of under-relaxation 
factors were tried for Ra= lo8, and each run was made with a minimum of 1000 iterations. The 
runs were performed both with and without the initial guess from the solutions of Ra= 10'. The 
norm could only be reduced to lo9 for the best case. Although this does not imply that solutions 
are impossible, they are difficult. No solution was attempted for Ra= lo9. 

Compared to the iterative methods, the semidirect techniques are shown to be significantly 
more robust. Solutions have been readily obtained for Rayleigh numbers up to lo9. Although no 
attempt was made to obtain a solution for Ra> lo9, it is believed that this could be accomplished 
without significant difficulty. For the cases where the iterative methods converged, the relative 
computational effort between the iterative and semidirect approaches is shown to be comparable. 
Note, however, that if the optimum under-relaxation factors are not known in advance, the 
required execution times can be expected to increase by approximately two to three times. 

Use of the previous solution as an initial guess did not help significantly with the iterative 
methods. Comparison of Tables 111 and IV shows that for the direct methods the impact can be 
substantial. An interesting feature of using results from previous solutions is that the full capability 
of the more robust methods is not as apparent as with the zero initial guess. The reason is that use 
of a previous solution results in a less difficult problem and the advantages of the more robust 
methods are diminished. 

At Ra = lo9 solutions were not obtained with the Newton-Raphson method and the search 
with Broyden update using solutions from Ra = lo8. Instead Ra increments of 0.25 and 0 5  x lo9 
were used, which resulted in rapidly convergent solutions for these methods. The highly robust 
nature of the hybrid method and the search with Jacobian update was evident at Ra= lo9 since 
solutions could be obtained directly using results from Ra = lo8. These solutions, however, were 

Table IV. Comparison of direct and iterative methods in terms of iterations and (time) 

Ra = 
Method 

HS 
SJ 
SB 
NR 
SIMPLE 
SIMPLER 

~ ~ ~~ 

104 105 106 107 108 109 

6-2 (19.21) 7-1 (24.89) 11-2 (35.95) 19-5 (59.755) 28-8 (87.76) 53-15 (171.37) 
6-2 (19.21) 13-6 (34.15) 20-9 (53.96) 28-12 (77.99) 35-15 (106.0) 62-22 (189.67) 
8-1 (16.57) 11-2 (22.44) 19-2 (39.14) 33-5 (61.47) 62-8 (124.95) 116-13 (245-35) 
6 1  (22.17) 14-6 (34'84) 21-9 (53.66) 27-12 (76.26) 36-15 (102.73) 63-24 (18210) 

- 289 (29.23) 441 (44.56) 350 (35.20) 533 (53.27) - 
84 (8.99) 284 (3040) 217 (23.12) 665 (71.33) - - 

Note: no entry implies that no solution was obtained. 
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not as efficient as those obtained by the Ra increments used with the Newton-Raphson and 
Broyden search methods. Since these increments result in fewer iterations and lower execution 
times, the data presented in the table for Ra= lo9 are based on these increments. 

Driven cavity problem 

energy equations is not required. Assuming constant properties, the governing equations are 
In this problem the bottom wall of the cavity moves with unit velocity and the solution of the 

au av 
ax a~ -+-=0, 

with 

U =  1; Y=O, U = V=O; all other boundaries. 

This problem has also been studied in semidirect finite difference form by Vanka and Leaf4 and by 
Braaten.’ In both of these previous studies the discretization practice was identical to that used 
here. The Reynolds number range over which the driven cavity problem was solved previously 
was 0.1 to lo3. In this study the driven cavity problem has been solved for Reynolds numbers 
ranging from lo-’ to lo6. A detailed investigation has been performed for Reynolds numbers 
between 10 and lo3. A summary of this investigation in terms of the most suitable semidirect 
methods of this paper is given in Table V. The 30 x 30 irregular grid used in the previous problem 
was used here also. The results given in Table V show the iterations and times required to obtain a 
solution with full factorization. The nature of this problem is such that the highly robust methods 
are not actually required to obtain a rapidly convergent solution, at least not for the Reynolds 
numbers indicated. 

For the range of Reynolds numbers shown in Table V even the iterative methods were well 
behaved; that is, no adjustments to the under-relaxation factors were necessary to obtain 
convergence. A comparison between the semidirect and iterative methods is given in Table VI. 
These results illustrate that the semidirect methods are rapidly convergent and are approximately 
two to three times more efficient than SIMPLE and SIMPLER. A notable exception is the 
solution for Re= lo3. Here SIMPLER requires less computational effort than the semidirect 
methods. It should also be noted that the successive substitution approach gives results essentially 
identical to those obtained by Braaten’ with his UVP method. 

Table V. Driven cavity results in terms of iterations and (time) for direct methods 
using full factorization 

Re = 
Method 

10 lo2 103 

Broyden search (SB) 3 (3.17) 5 (4.98) 9 (8.92) 
Hybrid (HS) 3 (4.79) 4 (5.94) 6 (10.05) 
Newton-Raphson (NR) 3 (4-64) 4 (5.72) 8 (10.21) 
Successive substitution (SS) 3 (4.79) 7 (9.63) 13 (1686) 
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Table VI Comparison of direct and iterative methods for the driven cavity 
problem in terms of iterations and (time) with reduced factorization 

Re = 10 1 0 2  103 
Method 

Successive substitution (SS) 3-1 (3.71) 7.4 (5.28) 12-8 (6.95) 

Newton-Raphson (NR) 3-1 (3.66) 4-1 (4.72) 8-3 (7.23) 
Hybrid (HS) 3-1 (3.80) 4-1  (4.96) 8-4 (8.32) 

Broyden search (SB) 3--1 (2.73) 6-1 (4.10) 1 4 4  (7.45) 

SIMPLE 368 (27.51) 390 (29.15) 295 (21.86) 
SIMPLER 98 (8.19) 105 (8.79) 71 (5.95) 

1 

10’ 1 02 1 o3 1 o4 I o5 1 06 
Re 

Figure 3. Performance of the hybrid method as a function of the Reynolds number 

As a final exercise, the hybrid method was used to see if any problems would be encountered at 
significantly larger Reynolds numbers. The range of Reynolds numbers investigated was I0 to lo6. 
The results for this test are illustrated in Figure 3 in terms of iterations as a function of Reynolds 
number. This figure illustrates performance similar to that shown for the natural convection 
problem in Figure 2. These figures illustrate that the performance of the hybrid method on both 
the natural convection and driven cavity problems is very encouraging. 

EfSect of grid on performance 

As stated previously, the semidirect methods require substantial memory. Although it is felt that 
with virtual memory machines this limitation is not severe, it is still significant. The total core 
requirements as a function of grid subdivision for the basic methods used irh the comparison are 
illustrated in Figure 4. This figure shows that the memory requirements of the semidirect methods 
are significant. The search with recursive Broyden update with a 15-iteration restart window on a 
30 x 30 grid is approaching the maximum internal memory of the CRAY-1 computer (1 M word). 

Changing the refinement of the grid will affect the accuracy of the results as well as the 
performance of the individual methods. For this study the non-uniformity of the grid was selected 
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Figure 4. Storage requirements as a function of grid subdivision 
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Figure 5. Effect of grid subdivision on the performance of SIMPLE 

such that the 30 x 30 mesh would yield meaningful results for the natural convection problem (i.e. 
local and average Nusselt numbers within 0.5% of those given by DeVahl Davisz4). Typical 
performances of the iterative and semidirect methods as a function of the grid mesh for non- 
uniform grids are shown in Figures 5 and 6 respectively. 

These figures illustrate the exponential increase in computational effort as the grid is refined. 
With the iterative methods the computational effort per iteration increases in a linear fashion as 
the number of unknowns increases. However, owing to the sequential solution procedure, the rate 
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of propagation of boundary information into the interior of the calculation domain diminishes 
significantly as the grid is refined. Hence the iterations required for convergence increase in a non- 
linear fashion. With the semidirect methods boundary information is transmitted instantaneously; 
therefore the iterations are fairly insensitive to the number of unknowns. Unfortunately the 
operation count per iteration increases exponentially with these methods. 

While the techniques put forth in this paper can be effective, it is apparent from these figures that 
as stand-alone procedures they are not well suited for fine grids. An interesting approach to 
alleviate the problem encountered with fine grids yet maintain robustness is to incorporate the 
semidirect solution procedure into a multigrid algorithm. 

An important aspect of the multigrid technique is the choice of an efficient solution procedure. 
This topic has received considerable attention over the past several years. Typically some form of 
coupled implicit relaxation procedure is used. For example, Ghia et aJ.27 have used a coupled 
strongly implicit procedure. As an alternate approach Vanka" has used a local block implicit 
technique that may be considered a symmetrically coupled Gauss-Seidel procedure. More 
recently, Kelkar and Patankar29 have implemented a correction scheme that incorporates a 
semidirect solution on the coarse correction grid and an iterative solution on the fine grid. Their 
work has shown that semidirect approaches can be effective, even for fine grid resolution, when 
applied in a multigrid scheme. 

CONCLUDING REMARKS 

In this article several semidirect finite difference methods have been used to solve the natural 
convection and driven cavity problems. It has been demonstrated that semidirect formulations 
can be an effective alternative to the more conventional iterative approaches SIMPLE and 
SIMPLER. The search with Jacobian update and the hybrid approach were the most robust 
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Figure 6. Effect of grid subdivision on the performance of the Newton-Raphson method 
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methods studied. The search with the modified Broyden update, although somewhat less robust 
than these methods, was generally more computationally efficient. The convergence character- 
istics of semidirect methods can be enhanced considerably by incorporating a norm-reducing 
search. Although stand-alone semidirect methods are not well suited for fine grid resolution, they 
can be used to enhance the overall robustness algorithms better suited for these applications. 
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APPENDIX: NOMENCLATURE 

matrix containing the coefficients of algebraic transport equations 
vector of source terms 
delay direction vector 
Grashof number 
general coefficient matrix 
Jacobian matrix 
Nusselt number 
pressure 
dimensionless pressure 
Prandtl number 
direction vector 
pseudo-direction vector 
residual 
residual vector 
auxiliary vector 
Rayleigh number 
Temperature 
scalar search parameter 
dimensionless u-velocity 
dimensionless u-velocity 
dimensionless distance in x-direction 
state vector 
square of Euclidean norm 
dimensionless distance in y-direction 

Greek symbols 

E scalar search parameter 
8 dimensionless temperature 
P density 

general dependent variable 
diffusion coefficient 

4J 
r 
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